
INTEGRAL EQUATIONS FOR SOME INVERSE PROBLEMS OF RADIATIVE 

HEAT EXCHANGE 

E. K. Belonogov and A. Yu. Zatsepin UDC 536,24:621.1.016 

We consider the derivation and analysisof integral equations for some inverse 
problems of radiative heat exchange. 

The majority of the papers in the field of inverse problems of heat exchange have been 
devoted to the methods and applications of inverse problems of heat conduction [1-3]. From 
the mathematical point of view, these problems can be treated as inverse problems for the 
differential equation of heat conduction. The treatment of radiative heat exchange processes 
is normally based on integral and integrodifferential equations [4, 5]. Problems leading to 
inverse problems of radiative heat exchange (IPRHE) occur primarily in the design of various 
technological devices and in the interpretation of experiments on thermal processes where the 
transport of heat by radiation is dominant. Inverse problems for integral equations of radi- 
ative transport in different fields were considered in [6-9] and in [4, 10-12] integral equa- 
tions were considered for particular formulations of inverse radiative heat-exchange problems 
in a system of diffusely radiating and reflecting bodies distributed in a diathermal medium. 
In continuation of these studies, we consider in the present paper the integral equations for 
a wider class of IPRHE. Inverse problems of heat exchange are in many cases incorrectly posed 
problems [1-3]. This is also true in IPRHE [4, I0], and, as will be seen below, different 
equations can be used in the solution of a particular inverse problem of radiative heat ex- 
change. Hence the problem is to choose equations such that minimum mathematical manipulation 
of the initial data is required to solve the problem. 

In heat engineering and thermal physics research, and also in measurements, we most of- 
ten consider fluxes of effective Eef f, resultant Er, and incident Ein c radiation. We write 
down several known results of radiative heat exchange which will be necessary in the discus" 
sion below: [4, 5]: 

= Eo + = E + ( i )  

E, = Eo -- (I -- R) Ein e = (Ec -- (I -- R) Eel/R, (2) 

Ein c (M) = ,l ~ff(N) K(M, N) dF N. (3) 
F 

The division of radiative heat exchange problems into direct and inverse problems will 
be done in correspondence with the generally accepted principle [1-3] based on the assign- 
ment of the quantity to be found to either the characteristics of cause or effect in the pro- 
cess being considered. The principle characteristics in radiative heat exchange problems 
are the temperature and optical properties of the surfaces, and the geometry of the system 
of heat-exchanging bodies (the kernel of Eq, (3)). E c is determined directly in terms of 
these characteristics and can be considered as a cause characteristic. All of the other ra- 
diation fluxes (Eeff, Ein c, E r) are effect characteristics. From this point of view, an in- 
verse radiative heat exchange problem consisting of the determination of the temperature ac- 
cording to a specified resultant radiation flux [4, 12] is a particular case of the set of 
inverse problems considered here. Similar inverse and direct radiative heat exchange prob- 
lems are related to one another and can easily be united into a single generalized problem 
[12], 

The derivation of the integral equations for inverse problems of radiative heat exchange 
is based on transformations of the equations for the corresponding direct (fundamental) radi- 
ative heat exchange problem. They have the following forms [4, 5]: 

N.E. Bauman Higher Technical School, Moscow. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 49, No. 6, pp. 916-920, December, 1985. Original article submitted May 17, 
1985. 

1404 0022-0841/85/4906-1404509.50 �9 1986 Plenum Publishing Corporation 



Eeff(M) - -  R (M).[ Ecff(N) K (M, N) dF N ~- Ec (M), M E F; 
F 

(4) 

Enc (M) - -  .f R (N) ~nc (N) K (M, N) dF N = S Ec (N) t~ (M, N) dF N, M E F; 
F F 

(5) 

E r (M)Ie (M) --  .f (1 - -  ~ (N))/e (N) E r (m) g (M, N) dF N = Ec (M)le (M) --  .I Eo (N)Ie (N) K (M, N) dFN, M E F. (6) 
F F 

TABLE I. 

Q~f Eo 

Ein c Eefi 

Ec 

E:j Eeff 

Ec 

Integral Equations for IPRHE of Group A 

Equation 

Ec (M) -- Ec;ff(M) - -  R (M) .f E~ff(N) K (M, N) dF N, M g F 
F 

~ F_~ff (IV) K (M, N) dF N : ~nr (M), M e F; 
F 

Ec (M) = F-eft(M) -- R (M) Einc (M) 

Feff(?r -- .f Ecff(N) K (M, N) dF~v =F x (M), M ~ F; 
F 

Eo (M) = (~ - -  R (M)) Fell(M) + R (M) E r (M) 

(D 

(s) 

(9) 

Equations (4)-(6) are Fredholm integral equations of the second kind. The theory of 
this type of equation, as well as methods of solution have been worked out extensively [4, 
5, 13]. 

An IPRHE consists of the determination of certain cause characteristics in terms of 
other known cause characteristics and known or specified effect characteristics. The quan- 
tities to be found in an inverse problem can be any of the cause characteristics or combina- 
tions of these characteristics. Here we consider only IPRHE which can be formulated in terms 
of integral equations of a known type (class) [13]. They include problems of determining the 
temperature (temperature IPRHE) or optical properties (optical IPRHE) [4, 14]. For the solu- 
tion of geometrical (configurational) IPRHE, variational methods are necessary [4]. 

In practice it is convenient to divide the various inverse problems into the following 
three groups, depending on the method of specifying the initial information at the surface 
of the radiating system. 

A. One of the radiation fluxes (besides Ec) is specified on the entire surface F. 

B. Different radiation fluxes are specified on two parts F~ and F2 of the surface F. 

C. Two different radiation fluxes are known on one of the parts of the surface F~. 

We consider the procedure of deriving the integral equations for the case of temperature 
IPRHE, which are of the most interest in practice [I0, Ii, 14]. 

If any Of the radiation fluxes pertaining to effect characteristics is specified on the 
entire surface (a problem of group A), the integral equation for E c (and thus the temperature) 
can in principle be obtained by substituting the known quantities into the left hand sides of 
equations (4)-(6). Analysis shows that the problems of this type can be solved more effec- 
tively in two steps. In the first step we determine Eef f from the corresponding integral 
equation, and in the second we determine E c from (I) or (2) in terms of the two known radia- 
tion fluxes. Then all inverse problems of this group, for all possible combinations of speci- 
fied radiation fluxes, can be described (for known Eeff, Einc, or Er) in terms of Fredholm 
integral equation of the first or second kind (see Table i). The utility of this approach 
is that the specified function is used directly in the solution of the integral equation, 
without additional transformations and thus the error in the right hand side will be a mini- 
mum. This is an important condition in finding regular solutions of integral equations; par- 
ticularly Fredholmequations of the first kind [13]. 
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TABLE 2. Systems of Integral Equations for IPRHE of Group B 

Specified 

Fx Fz 

Ee 

Etnc 

Einc 

~eff] 

i 

I 

;inc 

Eeff 

eeff 

E r 

To be found 

F:t F 2  

Eeff Ec 

System of equation 

~ f f - -  R .I EeflK1dF = Ee -~- t9. ,I FeffK'dF'. M C; F,; 
F~ F2 

0o) 
: Ee -Jr- R I" Eefftf'dF = F~ff---R f FeffK"zdF' M e F, 

F1 F~ 

~ne Ee 

Einc 

Eeff Einc 

(Eo) (Ec) 

E~ff E r 

(Ee) (Ec) 

�9 Ein c E r 

(Eo) (Ec) 

E~ff-  ~ .iEef~KdP = eo, ~re ~;  
F 

(ll) 
F~ 

F 
(Feff-- Ee)/R, M ~ F1; Ec=Eeff--REin o, M~F.; 

.f  f(ldF =  ff l F, M F1; 
F, F2 

02) 
~nc : .f Eeff~sdF + .f E fiK2dF, 3'I C F2; 

F1 F~ 

Ec : F-eft-- REinc 

Eeff-- .!" F-~ftKldF = Er + t' Eef~ldF' M C F1; 

03) 

F~ F~ 

i( Eeffrr'xdF =/~ne.' ME F~; 
F 

(14) 
Eef f -  j" Eef~..dF = 1~ , M C= F2; 

F 

E t : Eef f -  Ein e M e F1; Ein c = Eeff-Er, M E F,; 

Ec = Eef f -  REine 

For inverse problems where different combinations of radiation fluxes are known on two 
parts of the surface (problems of group B), the integral equation can also be derived from 
equations (4)-(6), (relating the two specified fluxes) as a system of two equations written 
for each part of the surface Fx and F2. However, the resulting system of integral equations 
will have a simpler structure if we take Eef f as an intermediate quantity to be found, as in 
the analysis of problems of group A. Then all inverse problems of group B can be represented 
as five systems of equations, as shown in Table 2. 

Each of the equations of the system is one of the equations (3), (4) or (9) transformed 
according to whether the specified quantity belongs to Fx or F2. Analysis of these systems 
reveals certain characteristic traits. If the flux density of incident radiation is speci- 
fied on a part of the surface, then one of the equations of the system is a Fredholm integral 
equation of the first kind (systems (ii), (12), and (14)). If the flux density of effective 
radiation is specified on a part of the surface F2 (systems (i0), (12), and (13)) then the 
equations are solved successively in two steps: first the unknown radiation fluxes are deter- 
mined independently from the equations for the part of the surface Fx; then all of the radia- 
tion fluxes are found on F2. An iteration method must be used to solve this system, which 
consists of equations of the first and second kinds. 

With the help of relations (i) and (2), any problem of group C can always be reduced to 
a problem in which both the flux density of effective radiation and the flux density of in- 
cident radiation are specified on Fx. One encounters similar problems in the determination 
of specified heat flux fields with radiative heating devices [i0]. In this case the determi- 
nation of the unknown quantities on F2 is based on the solution of a system of equations 
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which are simpler in structure than those for other cases: 

,( Ef t  (N) K (M, N) dF~v = ~nc (M) - -  .f Eeff(N) K (M, N) dFN, M C F1; 
F~ F~ 

Ein c (M) - -  j~ eeff(N ) If(M, N) dF N = f eeff(N)t((M, N) dFN, M C F2. 
F= F~ 

The first of these equations is a Fredholm equation of the first kind and can be solved in- 
dependently of the second. Substitution of the obtained flux density of effective radiation 
on F= into the second equation yields at once the flux density of incident ratiation on F2. 

For the inverse problems of radiative heat exchange considered above it was required to 
determine the temperature of a surface (for known optical property). We briefly consider now 
the case where the optical property (~ = 1 -- R) is unknown, while the temperature is known. 

For inverse problems of group A, the determination of m reduces to the solution of the 
equations shown in Table I. Then using the Stefan--Boltzmann law for Ec, the problem reduces 
to the solution of a linear equation for E. For inverse problems of group B and C, when any 
of the radiation fluxes except E c are specified on parts of the surface, the determination of 
the optical properties also reduces to the solution of the systems of equations considered 
above and then calculation from these equations of a linear equation for m or R. 

A qualitative analysis of the integral equations considered here shows that the solution 
of Fredholm integral equations of the second kind, figuring in direct and inverse radiative 
heat exchange problems, does not cause particular difficulties. But the choice of an effec- 
tive method of solving Fredholm equations of the first kind, and systems of these equations 
describing the inverse problems considered above, requires additional study. 

NOTATION 

E c = Ec(M), Eef f = Eeff(M), Ein c = Einc(M), E r = Er(M), respectively, flux densities of 
the characteristic, effective incident, and resultant radiation m = E(M), R = R(M), integral 
emissivity and reflectivity of the surface in the neighborhood of the point M; F, surface 
area of the system of bodies; F:, F2, parts of the surface F; K(M, N), kernel of the integral 
equation, completely determined by the geometry of the system of bodies; KI(M, N) = K(M s FI, 
N); K2(M, N) = K(M s F2, N). 
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SOLUTION OF INVERSE PROBLEMS OF RADIATIVE TRANSPORT 

BY SOOT PARTICLES OF COMPLEX SHAPES 

F. G. Bakirov, G. N. Zverev, R. S. Kashapov, 
and Z. G. Shaikhutdinov 

UDC 536.3:621.43.019.7 

We work out a method of determining the effective parameters of soot particles 
from their radiation characteristics. The method is based on the measurements 
of the spectral transmission coefficient in the infrared region of the spectrum. 

It is known that the radiative properties of hydrocarbon flames are determined mainly 
by a polydisperse system of soot particles with complicated shapes and with a wide spectrum 
of sizes (from 0.02 to 5 ~m) [i]. The current methods of calculating the radiative charac- 
teristics are based on the representation of the soot particles as spheres or ellipsoids of 
the same volume as the actual aggregate. Also the effect of the sizes, shapes, and orienta- 
tions of the particles in space on the radiative characteristics of the flame are not taken 
into account. The data from optical measurements cannot be used to establish the concentra- 
tion of soot in the combustion products because of the unsatisfactory agreement with measure- 
ments by contact methods [i, 2]. 

The refinement and development of optical diagnostics of hydrocarbon propellant flames 
in the presence of a dust of soot particles requires i) quantitative relations between the 
effective parameters of the soot particles which determine their radiative characteristics, 
and the sizes, shapes, and orientations of the particles in space, and 2) solution of the in- 
verse problem of radiative transport by particles of complicated shapes, i.e., the determina- 
tion of these parameters from measurements of attenuation or angular scattering upon probing 
the medium by sources of radiative energy. 

The solution of the first problem reduces to the choice of an optical model of the soot 
particles which would give the dependence of the radiative spectral characteristics of the 
particles on their sizes, shapes, and orientations in space on the basis of the Mie theory of 
the interaction of a flux of radiation with a spherical particle. 

In [3] this problem was studied analytically and an optical model of the soot particles 
was worked out for the interpretation of attenuation measurements of the radiation flux by 
the soot particles. The model uses the following assumptions: 

i) the soot particles are represented as clusters of elementary spheres of diameter do, 
and the number of spheres and their relative positions determines the size and shape of the 
aggregates; 

2) the spectral attenuation coefficient of the soot particles k%(D*) is determined by 
the effective size D*, which is the diameter of a circle with an area equal to the cross-sec- 
tional area of the aggregate F i = ~Di*=/4 = ~d~mi/4, wheremi isthe number of elementary par- 
ticles whose areas projected onto a Diane perpendicular to the direction of the flux makes up 
the area of the irradiated surface; 

3) the distribution function of the parameter m for soot particles consistin~ of nj ele- 
mentary particles obeys a normal distribution; 

4) the soot particles are oriented randomly in space. 

The quantitative relation between the effective parameters of the soot particles and 
their mass concentrations by size is given in terms of equations which were obtained with the 
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